Heavy-duty HVP 88420


## Application

Heavy-duty concealed beam connector for wood-wood connections.

Product Specifications

| Dimensions w $\mathbf{\times h} \times \mathbf{d}$ | $120 \times 200 \times 20$ |
| :--- | :--- |
| Number of screws | 16 |
| Screw size | $\varnothing 8 \times 100-200$ |
| Minimum timber section with screw <br> $\boldsymbol{8} \times \mathbf{1 6 0}(\mathbf{m m})$ header | $160 \times 220$ |
| Joist | $140 \times 220$ |
| Characteristic load capacity* <br> $\boldsymbol{8} \times \mathbf{1 6 0}$ | 50.29 |
| $\boldsymbol{\varnothing 8 \times 2 0 0}$ | 62.21 |
| Carton quantity | 4 |
| CE | $*$ |

* F2,Rk (kN) for GL24h with fully threaded screws: $\varnothing 8 \times 160$ with effective thread length of 150 mm and $\varnothing 8 \times 200$ with effective thread length of 190 mm . For other screws and thread lengths or wood based materials: cf. design manual.


## Product Description

## Main and secondary beam connection wood to wood

Main and secondary beam connection wood to wood with PITZL HVP 88420.1000 according to ETA-15/0187. The connection to secondary beam with 8 SFS HT (Heco) screws with a diameter of 8.0 mm and a length of $160 / 180 / 200 \mathrm{~mm}$. Connection to main beam with 8 SFS HT (Heco) screws with a diameter of 8.0 mm and a length of 160/180/200 mm . The lift-off protection with 2 pcs. SFS HT cylinder head screws with a diameter of 6.0 mm and a length of 20 mm is required. A transverse tension lock is/is not to be provided in the area of the main/secondary beam. The main beam is/is not torsional fixed or sufficiently held. The serviceability has to be proven by the stiffness characteristics. A fire resistance time of 60 minutes is to be solved by appropriate design measures.

## The characteristic load bearing capacity according to timber strength class C24 are:

$F_{1, \mathrm{Rk}}=40.00 / 40.00 / 40.00 \mathrm{kN}$ - Force acting in direction of the secondary beam
$F_{2, R \mathrm{k}}=46.60 / 52.15 / 57.64 \mathrm{kN}$ - Force acting in direction of insertion
$F_{3, R k}=25.82 \mathrm{kN}-$ Force acting against direction of insertion
$\mathrm{F}_{4, \mathrm{Rk}}=25.82 \mathrm{kN}$ - Force acting perpendicular to direction of insertion
Mtor, J, Rk $=648.64 \mathrm{kN}$ - Rotation moment in the axis of the secondary beam
The characteristic load bearing capacity according to timber strength class GL24h are:
$F_{1, \mathrm{Rk}}=40.00 / 40.00 / 40.00 \mathrm{kN}$ - Force acting in direction of the secondary beam
$F_{2, R \mathrm{k}}=50.29 / 56.28 / 62.21 \mathrm{kN}$ - Force acting in direction of insertion
$\mathrm{F}_{3, \mathrm{Rk}}=27.08 \mathrm{kN}$ - Force acting against direction of insertion
$\mathrm{F}_{4, \mathrm{Rk}}=27.08 \mathrm{kN}-$ Force acting perpendicular to direction of insertion
Mtor, J, Rk $=680.30 \mathrm{kN}$ - Rotation moment in the axis of the secondary beam
The number and arrangement of the connectors as well as the installation and assembly must be taken from the specifications in accordance with ETA-15/0187. Basically, the requirements of DIN EN 1995 must be fulfilled.

Heavy-duty HVP 88420

## Static Values

| Effective thread length ( $\ell_{\text {ef }}$ ) |  | Minimal section (mm) |  | Characteristic load capacity $\mathrm{R}_{\mathrm{K}}(\mathrm{KN})$ |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | Solid wood C24$\left(\rho_{\mathrm{k}}=350 \mathrm{~kg} / \mathrm{m}^{3}\right)$ |  |  |  | Glued-laminated timber GL24h $\left(\rho_{\mathrm{k}}=385 \mathrm{~kg} / \mathrm{m}^{3}\right)$ |  |  |  |
| Screws | $\ell_{\text {ef }}(\mathrm{mm})$ | H | $J$ | $\mathrm{F}_{2, \mathrm{RK}}$ | $\mathrm{F}_{3, \mathrm{RK}}$ | $\mathrm{F}_{4, \mathrm{RK}}$ | $\mathrm{F}_{1, \mathrm{RK}}$ | $\mathrm{F}_{2, \mathrm{RK}}$ | $\mathrm{F}_{3, \mathrm{RK}}$ | $\mathrm{F}_{4, \mathrm{RK}}$ | $\mathrm{F}_{1, \mathrm{RK}}$ |
| $\varnothing 8 \times 160$ | 150 | $160 \times 220$ | $140 \times 220$ | 46.00 | 25.82 | 25.82 | 40.00 | 50.29 | 27.08 | 27.08 | 40.00 |
| $\underline{08 \times 180}$ | 170 | $180 \times 250$ | $140 \times 250$ | 52.15 |  |  | 40.00 | 56.28 |  |  | 40.00 |
| $\varnothing 8 \times 200$ | 190 | $200 \times 280$ | $140 \times 280$ | 57.64 |  |  | 40.00 | 62.21 |  |  | 40.00 |





